DIRICHLET AND NEUMAN PROBLEMS

FOR THE SEIBERG-WITTEN EQUATIONS

Dr. Celso Melchiades Doria cmdoria@mtm.ufsc.br

Abstract

It is shown that the non-homogeneous Dirichlet and Neuman problems for the 2^{nd} -order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the \mathcal{H} -condition, which is a non-homogeneous Palais-Smale Condition, is satisfied. The approach consist in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Couloumb subspace $\mathcal{C}^{\mathfrak{C}}_{\alpha}$ of configuration space. The coercivity of the \mathcal{SW}_{α} -functional, when restricted into the Coulomb subspace, imply existence of a weak solution, which turn out to be a strong solution. Its is shown that whenever (A,ϕ) is a solution $(\phi \neq 0)$ the spinor field ϕ is L^{∞} bounded. The regularity then follows from the boundness of L^{∞} -norms of a spinor solution and the Gauge Fixing Lemma.

The Dirichlet (\mathcal{D}) and Neumann (\mathcal{N}) boundary value problems associated to the \mathcal{SW}_{α} -equations are the following: Let's consider $(\Theta, \sigma) \in \Omega^1(ad(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{S}^+_{\alpha})$ and (A_0, ϕ_0) defined on the manifold ∂X $(A_0$ is a connection on $\mathcal{L}_{\alpha} \mid_{\partial X}$, ϕ_0 is a section of $\Gamma(\mathcal{S}^+_{\alpha} \mid_{\partial X})$). In this way, find $(A, \phi) \in \mathcal{C}^{\mathcal{D}}_{\alpha}$ satisfying \mathcal{D} and $(A, \phi) \in \mathcal{C}^{\mathcal{N}}_{\alpha}$ satisfying \mathcal{N} , where

$$\mathcal{D} = \begin{cases} d^* F_A + 4\Phi^*(\nabla^A \phi) = \Theta, \\ \Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\ (A, \phi)|_{\partial X} \overset{\text{gauge}}{\sim} (A_0, \phi_0), \end{cases} \mathcal{N} = \begin{cases} d^* F_A + 4\Phi^*(\nabla^A \phi) = \Theta, \\ \Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\ i^* (*F_A) = 0, \nabla^A_{\nu} \phi = 0, \end{cases}$$
(0.1)

and

1. the operator $\Phi^*: \Omega^1(\mathcal{S}_{\alpha}^+) \to \Omega^1(\mathfrak{u}_1)$ is locally given by

$$\Phi^*(\nabla^A \phi) = \frac{1}{2} \nabla^A(|\phi|^2) = \sum_i \langle \nabla_i^A \phi, \phi \rangle \eta_i, \tag{0.2}$$

and $\eta = {\eta_i}$ is an orthonormal frame in $\Omega^1(ad(\mathfrak{u}_1))$.

2. $i^*(*F_A) = F_4$, where

 $F_4 = (F_{14}, F_{24}, F_{34}, 0)$ is the local representation of the 4^{th} -component (normal to ∂X) of the 2-form of curvature in the local chart (x, U) of X;

$$x(U) = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4; ||x|| < \epsilon, x_4 \ge 0\}, \text{ and }$$

 $x(U \cap \partial X) \subset \{x \in x(U) \mid x_4 = 0\}$. Let $\{e_1, e_2, e_3, e_4\}$ be the canonical base of \mathbb{R}^4 , so $\nu = -e_4$ is the normal vector field along ∂X .

A global formulation for problems \mathcal{D} and \mathcal{N} is made using the Seiberg-Witten functional, which for each $\alpha \in Spin^{c}(X)$, is defined as

$$SW_{\alpha}(A,\phi) = \int_{Y} \left\{ \frac{1}{4} |F_{A}|^{2} + |\nabla^{A}\phi|^{2} + \frac{1}{8} |\phi|^{4} + \frac{k_{g}}{4} |\phi|^{2} \right\} dv_{g} + \pi^{2}\alpha^{2}. \tag{0.3}$$

where k_q = scalar curvature of (X,g).

The \mathcal{G}_{α} -action on \mathcal{C}_{α} has the following properties;